可见光/近红外成像系统共轴折叠反射镜干涉检测技术(特邀)

熊玉朋^{1,2,3},路文文^{1,2,3},黄 铖^{1,2,3},陈付磊^{1,2,3},陈善勇^{1,2,3*}

(1. 国防科技大学智能科学学院装备综合保障技术重点实验室,湖南长沙410073;
2. 国防科技大学智能科学学院超精密加工技术湖南省重点实验室,湖南长沙410073;
3. 国防科技大学南湖之光实验室,湖南长沙410073)

摘 要:由共用镜坯、径向折叠的多个环带反射镜组成的成像系统具有紧凑化、免装调的特点。为确 保各反射镜的面形精度和相互位姿精度,提出了计算全息 (Computer Generated Hologram, CGH) 补偿 干涉测量方法。针对可见光/近红外成像需求,基于共轴折叠思路设计了环带四反射镜成像系统;应用 金刚石车削工艺加工了多环带共体反射镜;重点针对其中共体的主镜、三镜和次镜、四镜分别设计了 CGH 补偿器,通过合理选择离焦载频和 CGH 轴向位置,有效分离了干扰衍射级次的鬼像,实现了多个 反射镜面形与相互位姿误差的同步检测。干涉测量结果表明,多个反射镜同时达到接近零条纹状态, 面形精度和相互位姿精度较高,且无鬼像干扰。系统对 100 m 远处目标探测实验表明,反射镜不需要 额外装调即可实现良好成像,具有集成度高、研制周期短、成像质量高的优点。 关键词:可见光/近红外成像系统;折叠反射镜;干涉检测;计算全息;高次非球面

中图分类号: O439; O436.1 文献标志码: A **DOI**: 10.3788/IRLA20230175

0 引 言

光电成像系统是各类装备的眼睛,在场景探测和 目标识别方面具有不可替代的作用,为获得更丰富的 目标信息,多波段融合探测是其发展方向之一。现有 多波段成像系统多采用分立式结构,系统体积架构 大、制造成本高,且分立系统间存在的视差无法保证 空间一致性,这给图像融合等后端处理带来诸多难 题。多波段共孔径也是一种常用的构型,一般是利用 分光元件对前置光路进行分光后,再通过分立的后置 光路响应不同波段的探测需求。多波段共孔径的方 案改善了视场和光轴的一致性,可提升可见光成像系 统和长波红外成像系统的图像融合能力,但前置光路 以外的光学元件数目较多,系统装调难度大,抗外界 干扰能力较差。

伴随着以单点金刚石车削为代表的超精密加工 技术的发展,将多个复杂曲面光学元件高形位精度同 步集成在同一块镜坯上成为可能,这类多面共体元件 多面共体反射镜是将两个或多个曲面集成在一 个基底上,各曲面间的位置关系依靠加工来保证,不 需要后续装调。检测是超精密加工的前提,多面共体 反射镜是将复杂曲面的装调难度转移到检测上,因此

作者简介:熊玉朋,男,副教授,博士,主要从事光学系统设计与集成方面的研究。 通讯作者:陈善勇,男,研究员,博士,主要从事光学检测与超精密加工方面的研究。

为光学系统的构型选择、性能优化和系统装调提供了 新的解决方案,正受到高度关注。除在离轴三反/四 反成像系统中采用多面共体结构以缩小体积并提高 稳定性外,同轴系统也可以通过轴向压缩、径向折叠 的方式,利用多面共体结构实现扁平化紧凑成像系统 设计。系统成像所用的多个反射镜均为环带形式,径 向错开而轴向距离很短。由于系统入瞳为环带,中心 遮拦部分较大,通常可同轴嵌套多个不同功能的同类 系统实现可见光、红外等多个波段的共轴成像,应用 于无人平台光电探测^[1-5]、眼视光学^[6]、消费电子产品 如手机微光学标签识别^[7]等领域具有明显优势。也 可用透镜材料甚至梯度折射率材料^[8]将整个系统集 成在单块镜体上,或与液体透镜等构成可变焦的共轴 折叠成像系统^[9]。

收稿日期:2023-03-30; 修订日期:2023-05-31

基金项目:国家自然科学基金 (51975578)

同时测得多个曲面的面形误差和位姿误差非常关键。传统的组合镜组补偿器不适合同时对多个非球面进行零位测试。计算全息(Computer Generated Hologram, CGH)补偿方法是在同一个基底上同步制作多 个不同功能的衍射区域,不同衍射区域生成不同面形 的测试波前,能够同时测得多个面形的面形误差及相 对位姿误差,能够为补偿加工提供准确误差反馈,从 而提高多面共体反射镜的加工精度^[10]。CGH已广泛 用于非球面、离轴非球面和自由曲面的高精度补偿检 测^[11-14],但针对共轴折叠多面共体反射镜的CGH补 偿器设计还有诸多难题需要解决。

面向多波段融合探测需求,基于共轴折叠思路设 计了可见光/近红外融合成像系统,针对其中的多面 共体光学元件进行 CGH 补偿器设计,重点对干扰衍 射级次的鬼像进行分析和抑制,最后完成形位误差同 步检测,研制的成像系统获得了较好的成像效果。

1 共轴折叠可见光/近红外成像系统

1.1 设计要求与初始结构求解

该成像系统用于可见光/近红外成像, 探测器的 响应波段覆盖可见光至 750~1100 nm 的近红外波段, 像元尺寸为 3.45 μm, 像元数为 2448×2 048, 角分辨率 优于 0.5 mrad, 视场大于 10°。系统采用共轴折叠结 构, 在中心遮拦部分同轴嵌套一个可见光成像镜头 (货架产品)。

共轴折叠成像系统参数如图 1 所示。系统入瞳 为环形孔径, d_{out} 代表系统外径, d_{in} 代表系统内径, d代 表系统厚度, 光线经 d_{out} 和 d_{in} 之间的宽度为w的环形孔 进入, 经过多次反射后入射到像面上。遮拦比为 $\alpha = d_{in}/d_{out}$, 有效口径为 $d_{eff} = \sqrt{d_{out}^2 - d_{in}^2}$ 。

光学系统的初始结构可以在常规同轴四反系统

Fig.1 Schematic diagram of the folding imaging system

结构的基础上基于像差理论和附加边界约束条件计 算得到,初始结构参数见表1。

表1 初始结构参数

Tab.1 Initial structure parameters

Surface	Radius/mm	Distance/mm	Conic
M_1	-43.576	-4.850	-3.272
M_2	229.697	4.700	91.869
M_3	107.812	-4.895	-336.062
M_4	-27.388	-	-18.507

1.2 光学设计结果与评价

将各镜面的面形改为偶次非球面,非球面方程如 公式(1)所示:

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + A_2r^2 + A_4r^4 + A_6r^6 + A_8r^8 + A_{10}r^{10} + A_{12}r^{12} + A_{14}r^{14} + A_{16}r^{16}$$
(1)

式中: c代表顶点曲率; r代表径向坐标; k代表二次常数,并设置非球面的最高幂次为16。以点列图大小为评价函数对光学设计结果进行参数优化,得到如图2 所示的成像系统,光线从环形入瞳入射到主镜 S1,先 后经过次镜 S2、三镜 S3和四镜 S4 反射后成像于探测器上。主镜和三镜、次镜和四镜分别共用镜坯,系 统基本参数如表 2 所示,优化后的高次非球面系数如 表 3 所示。

图 3 为系统的光学调制传递函数曲线,可以看出 全视场内调制函数值接近衍射极限。图 4 为系统的 场曲和畸变曲线,可以看出系统全视场畸变小于 1%。

图 2 成像系统光路 Fig.2 Optical layout of the imaging system

第6期

www.irla.cn

表 2 基本面型参数

第 52 卷

Tab.2 Basic surface parameters						
Surface	M_1	<i>M</i> ₂	M_3	<i>M</i> ₄		
Radius/mm	-67.998	-239.1149	-132.9414	-64.7218		
Distance/mm	-15.485	18.15515	-12.74705	24.65042		
Diameter/mm	66.2129	52.863 53	52.75673	32.0385		
Conic coefficient	0.291 99	67.76022	2.859459	-25.448		

表 3 高次非球面系数

Tab.3 High order aspheric coefficients

Surface	M_1	M_2	M_3	M_4
A_2	0.001 529 388 2	-0.007 541 662 4	0.0056460009	0.001 533 597 4
A_4	-1.0962896e-006	4.375154e-006	-2.6497218e-007	-1.296045e-005
A_6	1.5847328e-010	3.5537337e-009	-1.6551466e-009	7.4891721e-009
A_8	3.3404588e-013	3.7951706e-012	-3.5939478e-013	3.487 165 4e-011
A_{10}	5.8294423e-016	-5.2626752e-015	1.6072703e-015	-4.933 002 9e-013
A_{12}	-5.4089482e-019	4.980 596 1e-018	-3.6151876e-018	2.1115162e-015
A_{14}	2.624 827 8e-022	-2.5360935e-021	2.996 809 8e-021	-4.6380052e-018
A_{16}	5.322 143e-026	-8.9904043e-025	-1.1493177e-024	4.050 587 7e-021

Fig.3 Modulation transfer function (MTF) curve

Fig.4 (a) Field curvature and (b) distortion curves

2 共轴折叠反射镜的 CGH 补偿器设计

2.1 主镜与三镜的 CGH 设计

主镜与三镜共用一个镜坯, 面形均为最高 16次的偶次非曲面 (Even Asphere), 口径均为环形, 其中主镜环带外径 66.6 mm、内径 53 mm; 三镜环带外径 52.2 mm、内径 32.2 mm。设计 CGH 共用干涉仪实现主镜与三镜的同时检测, 使得从干涉仪发出的测试光 束中一部分被 CGH 上的主镜测试全息区域衍射后,

调制成与主镜面形匹配的测试波前;另一部分被同一 个 CGH上的三镜测试全息区域衍射后,调制成与三 镜面形匹配的测试波前。考虑到主镜与三镜均为回 转对称非球面且具有较大中心遮拦孔,CGH相位函 数采用回转对称多项式 (如 Zemax 软件中的 Binary 2 类型)且设计离焦 (power)载频来隔离干扰衍射级 次的鬼像。

由于 CGH 调制后的测试光束是法向入射到被测 非球面后沿着原路反射回来,满足零位测试 (Null Test)条件,首先计算被测非球面法向光线如图 5 所 示。主镜 (S1)非球面度峰谷值 (Peak-to-Valley, PV) 约 35.4λ (λ=632.8 nm 为干涉仪工作波长,下同),最小 弥散斑位置到其顶点距离为 *l*₁=109.589 nm,三镜 (S3)非球面度 PV 约 162.8λ,最小弥散斑位置到其顶 点距离为 *l*₃=49.367 nm,主镜与三镜顶点距离由前述 成像系统设计给出 *d*=2.669875 nm。在设计 CGH 时 必须确保主镜与三镜处于正确的相对位置。

Fig.5 Calculation of normal rays reflected off the test surface to determine the CGH position

由于被测面口径不大,确定 CGH 位置时一方面 考虑"萌芽时就消灭它"的消像差原则,应将 CGH 尽 可能靠近被测面 (预留安全距离方便检测装调);另一 方面,像点应取主镜与三镜最小弥散斑位置的中间位 置,这相当于在两个测试全息的相位函数中加入了不 同的离焦载频,可以方便地隔离干扰级次。此外,因 为像点就是干涉仪的标准球面镜头 (Transmission Sphere, TS) 的焦点,像点位置决定了球面测试波前的 f/数,应与干涉仪 TS 的 f/数匹配。

CGH采用光掩模制作工艺进行加工,使用标准的 6025 铬板 6 in (1 in=2.54 cm) 熔石英平板、厚约 6.4 mm)。CGH 到三镜顶点距离 18 mm,到主镜顶点距离

15.330125 mm, 到像点距离 45 mm, 优化 CGH 的相位 函数使得波像差均方根 (Root-Mean-Squares, RMS) 值 最小。主镜和三镜 CGH 相位函数的多项式分别取 6和12项,优化后的波像差残差 RMS 值均为零。如 图 6 所示, 主镜与三镜共用 CGH 及干涉仪点光源, 主 镜测试全息区域为 ø44.4~58.4 mm 环带, 三镜测试全 息区域为 ø19.2~32.8 mm 环带。同时,在 CGH 中心 涉仪点光源。CGH上三个全息区域均采用 Binary 2类型的回转对称图样,其中主镜测试全息的最小条 纹周期为 2.5 µm, 三镜测试全息的最小条纹周期为 2.9 µm, 均采用+1 级衍射, 对于占空比为 0.5 的二元台 阶振幅型 CGH,其衍射效率约 10%,适用于金属反射 镜等高反射率面形检测。辅助对准全息可采用+3级 衍射,最小条纹周期为4.6 µm,衍射效率约1%,与干 涉仪 TS 参考面 4% 反射率也能很好地匹配,获得较 好的干涉条纹对比度。

Fig.6 CGH design for the primary mirror and the tertiary mirror

CGH设计必须检查有无其他衍射级次的鬼像干扰,利用光学设计软件的光线追迹功能,如Zemax中通过Multi-Configuration设置不同衍射级次的组合(光线往返),在适当直径的像平面针孔滤波下,查看干扰级次的光线是否被有效遮拦而不能到达像平面。针孔直径所对应的空间频率通常应大于干涉仪CCD像素间隔所确定的Nyquist采样频率,即尽量避免因隔离干扰级次而设置的针孔滤波降低测量系统的空间分辨率。根据CGH设计结果,假设干涉仪

CCD 像素为 1000 pixel×1000 pixel, 主镜与三镜检测的针孔直径分别取 0.6 mm 与 1 mm, 经检查确认各级 衍射级次没有鬼像干扰。值得一提的是, 三镜 CGH 较易出现 (+3, 0)、(0, +3)级次组合的鬼像干扰, 如果 将 CGH 到像点距离改为 43 mm, CGH 到三镜顶点距 离改为 20 mm, 则存在如图 7 所示 (+3, 0)级次组合的 鬼像。此时即使调整 CGH 到像点距离 (改变离焦载频)也不能改善, 而将 CGH 到三镜顶点距离改为 18 mm 则可以避免鬼像干扰, 如图 8 所示, 三镜反射 回来的光线可被直径 1 mm 的针孔完全遮挡, 不会进

Fig.7 Annular ghost fringes generated by (+3, 0) orders when the distances of CGH to the point source and the tertiary mirror are 43 mm and 20 mm, respectively

- 图 8 当 CGH 到像点距离 45 mm、到三镜顶点距离 18 mm 时可避免 鬼像干扰
- Fig.8 Ghost fringes are eliminated when the distances of CGH to the point source and the tertiary mirror are 45 mm and 18 mm, respectively

入探测器像面。

对于回转对称全息图样,还应检查 CGH 测试全 息反射的鬼像干扰,因为测试球面波前可能与 CGH 反射非球面波前在某个环带处匹配 (接近等光程),从 而形成环带鬼像。经检查确认,主镜和三镜的 CGH 测试全息反射不会形成鬼像干扰。

2.2 次镜与四镜的 CGH 设计

次镜与四镜共用一个镜坏,面形均为最高16次 的偶次非曲面,口径均为环形,其中次镜环带外径 47.2 mm、内径 34 mm: 四镜环带外径 31.6 mm、内径 14.4 mm。与主镜和三镜类似, CGH 相位函数采用回 转对称多项式且设计离焦载频来隔离干扰衍射级次 的鬼像。不同的是,次镜与四镜都是凸非球面,检测 时置于干涉仪 TS 参考面与焦点之间, 需与 TS 的 f/数 及参考面曲率半径匹配。因为需要加入离焦载频,测 试球面波的f/数不应与被测非球面最佳拟合球面的 R/数(曲率半径与口径之比)接近,这里选用 f/3.3 左右 的 TS, CGH 到次镜顶点距离 20 mm, 到四镜顶点距 离 14.591 901 mm。次镜和四镜 CGH 相位函数的多项 式均取6项,优化后的波像差残差 RMS 值约 0.000 5λ。 若洗用4 in TS, 如图9 所示, 次镜与四镜共用 CGH 及 干涉仪点光源,点光源即 TS 焦点 (图中未显示) 到参 考面距离 298.03 mm。为确保 TS 参考面有效口径够 大,参考面到 CGH 的距离应不小于 60 mm。

图 9 使用 4 in f/3.3 TS 时次镜与四镜的 CGH 设计

Fig.9 CGH design for the secondary mirror and the fourth mirror with a 4-inch *f*/3.3 TS

设置次镜与四镜检测时的像面针孔直径为 1.1 mm 与 1.7 mm, 经检查确认各级衍射没有鬼像干 扰,但四镜测试全息存在自身反射鬼像。图 10 所示 为CGH上-1级衍射(反射)形成的环带鬼像区域,会 与非球面测试时的干涉图混叠在一起形成干扰。

图 10 使用 4 in f/3.3 TS 时四镜 CGH 反射 (-1 级) 鬼像

Fig.10 Ghost reflection of the fourth mirror CGH (-1 order) with a 4inch //3.3 TS

为了消除鬼像干扰,改用6 in f/3.5 TS, TS 焦点到 参考面距离 475.8 mm, 调整 TS 参考面到 CGH 距离 为150mm,如图11所示。设置次镜与四镜检测时的 像面针孔直径为 1.5 mm 与 2.3 mm, 检查各级衍射及 CGH 自身反射均无鬼像,满足共轴折叠的多面共体 反射镜的高精度检测要求。

图 11 使用 6 in f/3.5 TS 时次镜与四镜的 CGH 设计

Fig.11 CGH design for the secondary mirror and the fourth mirror with a 6-inch //3.5 TS

次镜测试全息区域为 ø48.8~71.2 mm 环带, 四镜 测试全息区域为 ø17.6~44.6 mm 环带。同时, 在 CGH 中心 ø17.4 mm 区域设计辅助对准全息,用于对 转CGH与干涉仪点光源。CGH上三个全息区域均 采用 Binary 2 类型的回转对称图样,其中次镜测试全 息的最小条纹周期为 2.3 µm, 四镜测试全息的最小条 纹周期为 2.8 µm, 辅助对准全息的最小条纹周期为

11.9 um, 均采用+1 级衍射。

实验验证 3

采用金刚石车削工艺进行光学元件加工,主镜和 三镜共用镜坯,在同一工序中完成加工,如图 12 所 示。加工后利用单个 CGH 同时对两个镜面进行零位 补偿测量,如图13所示。测得面形误差如图14所 示,主镜和三镜看作一个整体的面形误差为 PV 0.87λ、RMS 0.12λ。从干涉图中可以看出,鬼像条纹 只存在于主镜与三镜条纹区域之外,不形成干扰。主 镜和三镜同时达到接近零条纹状态,说明两者的面形 精度和相互位姿精度较高(达到亚波长级),满足系统 成像要求。由于各个全息区域采用同样的工艺同步 制作 (例如光掩模制造工艺),其衍射图样的位置误差 通常为 0.1 μm 级, 此例中测试全息的刻线周期最小 为 2.5 μm, 不同衍射波前之间的误差小于 PV λ/25, 确 保了共体的多个反射镜之间的相互位姿精度。采用

Fig.12 Diamond turning of the monolithic primary mirror and tertiary mirror

Fig.13 CGH null test of the monolithic primary mirror and tertiary mirror

基于 CGH 补偿的波前干涉方法能够直观检验共体反 射镜由于相互位姿误差导致的波像差。而常规的基 于位移传感测头扫描测量的方法则需要分别探测两 个反射镜面,通过复杂的数据处理(如面形拟合)确定 其光轴位置,计算其相互位姿误差,进而评估其对系 统成像的波像差影响。受测头误差和扫描运动误差 的影响,这种方法的测量精度通常要比波前干涉方法 低 3~5 倍。次镜与四镜的加工、检测方法相同,同样 利用 CGH 补偿获得零条纹状态。将主镜、三镜的镜 体与次镜、四镜的镜体装配在一起,几乎不需要额外 装调即可实现良好成像。系统装配好后,利用平行光 管搭设性能测试光路,测得系统视场为 12°,有效焦距 为 70 mm,角分辨率约为 0.052 mrad,均满足设计要 求。图 15 为利用该系统对距离 100 m 左右的目标成 像所采集的图像,可清晰地看到瓷砖缝隙和护栏等窄

图 15 对距离约 100 m 的目标成像 Fig.15 Imaging of targets at distance of about 100 m

细特征。

4 结 论

文中针对同轴四反成像系统的共体折叠反射镜 提出了基于 CGH 的补偿干涉测量方法。该方法通过 在同一个 CGH 基底上制作多个不同功能的全息区 域,使入射测试波前衍射后生成不同形状的非球面波 前,可同时对不同反射镜面形进行零位测试。基于 CGH 补偿测量进行超精密加工后的反射镜面形精度 和位姿精度都达到亚波长级,直接装配在一起而无需 额外装调即可实现良好成像。同样,通过加工定位基 准,同轴嵌套多个类似系统,能方便实现可见光到红 外的多个波段共轴成像,对于无人平台目标探测及快 速图像融合处理具有明显的优势。

参考文献:

- Tremblay E J, Stack R A, Morrison R L, et al. Ultrathin fourreflection imager [J]. *Applied Optics*, 2009, 48(2): 343-354.
- [2] Tremblay E J, Stack R A, Morrison R L, et al. Ultrathin cameras using annular folded optics [J]. *Applied Optics*, 2007, 46(4): 463-472.
- Zhang Ruirui, Shen Weimin. Ultrathin lenses using annular folded optics [J]. *Infrared and Laser Engineering*, 2012, 41(5): 1306-1310. (in Chinese)
- [4] Xiong Yupeng, Dai Yifan, Tie Guipeng, et al. Engineering a coaxial visible/infrared imaging system based on monolithic multisurface optics [J]. *Applied Optics*, 2018, 57(34): 10036-10043.
- [5] Xiong Yupeng, Dai Yifan, Chen Shanyong, et al. Design and experimental demonstration of coaxially folded all-reflective

imaging system [J]. *Current Optics and Photonics*, 2019, 3(3): 227-235.

- [6] Tremblay E J, Stamenov I, Bee R D, et al. Switchable telescopic contact lens [J]. *Optics Express*, 2013, 21(13): 19580-19586.
- [7] Ge Lan, Liang Zhongcheng. Micro-optics label receiving system based on annular aperture ultra-thin lens [J]. *Acta Optica Sinica*, 2015, 35(12): 1222001. (in Chinese)
- [8] Lippman D H, Chou R, Desai A X, et al. Polychromatic annular folded lenses using freeform gradient-index optics [J]. *Applied Optics*, 2022, 61(3): A1-A9.
- [9] Li Lei, Wang Di, Liu Chao, et al. Ultrathin zoom telescopic objective [J]. *Optics Express*, 2016, 24(16): 18674-18685.
- [10] Xiong Yupeng, Luo Tiancong, Dai Yifan, et al. In situ measurement and error compensation of monolithic multisurface optics [J]. *Optics Communications*, 2021, 484: 126665.
- [11] Chen Shanyong, Xue Shuai, Zhai Dede, et al. Measurement of

freeform optical surfaces: Trade-off between accuracy and dynamic range [J]. *Laser & Photonics Reviews*, 2020, 14(5): 1900365.

- [12] Guo Chengli, Zheng Dekang, Zhu Deyan, et al. Testing of aspheric surface with low reflectivity using hybrid type computer-generated hologram (*invited*) [J]. *Infrared and Laser Engineering*, 2022, 51(9): 20220547. (in Chinese)
- [13] Zhang Yuxin, Li Fazhi, Yan Lisong, et al. Long focal length aspherical mirror testing with CGH and auxiliary lenses (*invited*)
 [J]. *Infrared and Laser Engineering*, 2022, 51(9): 20220384. (in Chinese)
- [14] Su Hang, Wang Xiaokun, Cheng Qiang, et al. Sub-aperture stiching and CGH mixed compensation for the testing of large convex asphere (*invited*) [J]. *Infrared and Laser Engineering*, 2022, 51(9): 20220576. (in Chinese)

Interferometric test of coaxial folded mirrors for visible/near-infrared imaging systems (*invited*)

Xiong Yupeng^{1,2,3}, Lu Wenwen^{1,2,3}, Huang Cheng^{1,2,3}, Chen Fulei^{1,2,3}, Chen Shanyong^{1,2,3*}

(1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;

2. Hunan Key Laboratory of Ultra-Precision Machining Technology, College of Intelligence Science and Technology, National University of

Defense Technology, Changsha 410073, China;

3. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China)

Abstract:

Objective Photoelectric imaging system serves as the "eye" of all kinds of equipment, which plays an indispensable role in scene detection and target recognition. To acquire more abundant target information, one of the development directions is multi-band fusion detection. However, the existing multi-band imaging system mostly adopts the discrete structure, with large system volume architecture, high manufacturing cost, and lack of spatial consistency due to parallax between the discrete systems. The challenges pose difficulties in image fusion and other back-end processing. Multi-band common aperture, also a common configuration, is generally used to split the front optical path with optical components, and subsequently respond to the detection requirements of different bands through the discrete rear optical path. To address these issues, coaxial folded mirrors for visible/near-infrared imaging systems are designed in this paper.

Methods To guarantee the surface accuracy and relative orientation accuracy for multiple mirrors, an interferometric null test with a computer-generated hologram (CGH) is proposed (Fig.5). Diamond turning technology is applied to machining the mirrors. In this approach, two CGHs are designed for the null test of the monolithic primary/tertiary mirrors and the monolithic secondary/fourth mirrors (Fig.6, Fig.9). Ghost image of

disturbance orders of diffraction is effectively separated by properly choosing the power carrier and the axial position of the CGH. A single CGH is capable of simultaneously measuring both the surface error and the relative orientation error of multiple mirrors (Fig.8). The result of the interferometric null test shows multiple mirrors are measured with nearly null fringes, indicating high accuracy in terms of surface form and orientation. Moreover, no ghost disturbance is observed.

Results and Discussions The optical components undergo the diamond turning process, and the mirror blank is shared among the primary mirror and the three additional mirrors, allowing for simultaneous processing (Fig.12). After processing, a CGH is used to conduct zero compensation measurements on both mirrors (Fig.13). The measured surface shape error is shown (Fig.14), and the primary mirror and the three mirrors demonstrate a combined surface shaper error of PV 0.87λ , RMS 0.12λ ; Interference diagram reveals that the ghost image stripes only exist outside the main mirror and the three mirror stripes, and they do not form interference. The primary mirror and the three mirrors reach a near-zero fringe state at the same time, indicating a high level of surface shape accuracy and mutual pose accuracy (reaching the sub-wavelength level), which meets the imaging requirements of the system.

Conclusions The study proposes an interferometric null test with a CGH for the coaxial folded mirrors in visible/near-infrared imaging systems. The method involves the creation of multiple holographic regions with different functions on the same CGH substrate, which allows for the generation of the aspheric wavefronts of different shapes after the diffraction of the incident test wavefront. Consequently, the zero position of different mirror shapes can be tested at the same time. Following ultra-precision machining based on CGH compensation measurement, the mirror shape accuracy and pose accuracy attain a sub-wavelength level, which realizes direct assembly without additional assembly and adjustment for optimal imaging performance. Similarly, by positioning reference processing, multiple similar systems are nested coaxially, which enables multi-band coaxial imaging from visible light to near-infrared. Such capability holds obvious advantages for unmanned platform target detection and fast image fusion processing.

Key words: visible/near-infrared imaging system; folded mirror; interferometry; CGH; high-order aspheric surface

Funding projects: National Natural Science Foundation of China (51975578)